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COMPARISON OF LIFE THEORIES FOR ROLLING-ELEMENT BEARINGS

Erwin V. Zaretsky*, Joseph V. Poplawski t,

and Steven M. Peters*

ABSTRACT

Nearly five decades have passed since G. Lundberg and A. Palmgren published their

life theory in 1947 and 1952 and it was adopted as an ANSI/ABMA and ISO standard in

1950 and 1953. Subsequently, many variations and deviations from their life theory have been

proposed, the most recent being that of E. Ioannides and T.A. Harris in 1985. This paper

presents a critical analysis comparing the results of different life theories and discussing their

implications in the design and analysis of rolling-element bearings. Variations in the stress-

life relation and in the critical stress related to bearing life are discussed using stress fields

obtained from three-dimensional, finite-element analysis of a ball in a nonconforming race

under varying load. The results showed that for a ninth power stress-life exponent the

Lundberg-Palmgren theory best predicts life as exhibited by most air-melted bearing steels.

For a 12th power relation reflected by modem bearing steels, a Zaretsky-modified Weibull

equation is superior. The assumption of a fatigue-limiting stress distorts the stress-life

exponent and overpredicts life.
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SYMBOLS

material constant

semimajor axis of contact ellipse, m (in.)

semiminor axis of contact ellipse, m (in.)

dynamic load capacity, N (lbf)

critical shear stress-life exponent

ball diameter, m (in.)

Weibull slope
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exponent

life, millions of revolutions or millions of stress cycles

characteristic life, or operating time exceeded by 36.8 percent of a group

of bearings, millions of revolutions or millions of stress cycles

10-Percent life, or operating time exceeded by 90 percent of a group of

bearings, millions of revolutions or millions of stress cycles

50-Percent life, or operating time exceeded by 50 percent of a group of

bearings, millions of revolutions or millions of stress cycles

length of race, m (in.)

life, millions of stress cycles

Hertz stress-life exponent

equivalent bearing load, N 0bf)

load-life exponent

probability of survival, fraction or percent

maximum Hertz stress, Pa (psi)

stressed volume, cu. m (cu. in.)

coordinates

depth, m (in.)

depth to critical shear stress, m (in.)

depth to each stressed volume, m (in.)

principal stress, Pa (psi)

Von Mises stress, Pa (psi)

critical shear stress, Pa (psi)

maximum orthogonal shear stress, Pa (psi)

fatigue-limiting shear stress, Pa (psi)
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Xa5 in-plane shear stress, Pa (psi)

Subscripts

i

ref

V

VR

individual volume number

reference state

elemental volume

risk volume (Ref. 7)

INTRODUCTION

Beating fatigue life analysis is based on the initiation or first evidence of fatigue

spalling on either a beating race or a rolling element. This spalling phenomenon is time or

cycle dependent. Generally, the spalI begins in the region of maximum shear stresses, which

is located below the contact surface, and propagates into a crack network. Failures other than

those caused by classical rolling-element fatigue are considered avoidable if the bearing is

properly designed, handled, installed, and habdcated and is not overloaded (Ref. 1). However,

under low elastohydrodynamic (EHD) lubricant film conditions, rolling-element fatigue can be

surface or near-surface initiated with the spall propagating into the region of maximum shear

stresses.

If a number of apparently identical bearings are tested to fatigue at a specific load,

there is a wide dispersion in life among the various beatings. For a group of 30 or more

bearings the ratio of the longest to the shortest life may be 20 or more (Ref. 1).

The term "basic rating fife," as used in bearing catalogs, usually means the fatigue life

exceeded by 90 percent of the beatings or the time before which 10 percent of the bearings

fail. This basic rating life is referred to as "Llo life" (sometimes called B10 life or 10-percent

fife). The 10-percent life is approximately one-seventh of the mean life, or MTBF (mean time

between failures), for a normal life-dispersion curve (Ref. 1).

Weibull (Ref. 2) postulated that the dispersion in fatigue life for a homogeneous group

of rolling-element bearings can be expressed according to the

following relation:

lnln 1 L_-eln_

S LI3 (1)

Equation (1) relates the probability of survival S and the life L in millions of inner-

race revolutions. When In ha (l/S) is used as the ordinate and ha L as the abscissa, bearing

fatigue data plot as a straight line.
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Weibull (Ref. 2) further statedthatthe probability of survival S could be expressed as

In _1 _ _.c N e V

S (2)

where V is the volume representation of stress concentration referred to herein as "stressed

volume," x is the critical shear stress, and c is a critical shear stress-life exponent where from

F_q. (2)

N- "t-cle (3)

Lundberg and Palmgren (Ref. 3) extended the theoretical work of WeibuU (Ref. 2) and

showed that the probability of survival S could be expressed as a power function of

orthogonal shear stress %, life N, depth to maximum orthogonal shear stress z o, and stressed

volume V. That is,

t7

In 1 'to Ne
_ _ V

h (4)S Zo

and where

V = aIzo (5)

Then

C

In_l _ "toNe al
S h-1 (6)

Zo

Lundberg and Palmgren based their life theory on subsurface-originated fatigue, where

high EHD film conditions would exist. However, industry practice has evolved to use

Lundberg-Palmgren theory for both high and low EHD film conditions. Hence, the theory is

applicable to both surface- and subsurface-originated fatigue.

Lundberg and Palmgren (Ref. 3) obtained the following additional relation:

(7)

where CD, the basic dynamic load capacity, is defined as the load that a bearing can carry for

one million inner-race revolutions with a 90-percent probability of survival, Peq is the
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equivalent bearing load, and p is the load-life exponent. Endurance tests on ball bearings have

shown that p = 3 (Ref. 4). Most bearing manufacturers, the American National Standards

Institute (ANSI)/Anti-Friction Bearing Manufacturers Association (AFBMA), and the

International Organization for Standardization (ISO) have adopted this value of p for ball

bearings and 10/3 for roller beatings (Refs. 5 and 6). Substituting bearing geometry and Hertz

stress for a given load and life into Eq. (6), with appropriate exponents, results in a value of

CD for a given bearing.

Ioannides and Harris (Ref. 7) proposed a discrete-stressed-volume approach based on

Lundberg-Palmgren (Ref. 3) for bearing life prediction. In their analysis they also proposed

the concept of a fatigue limit. Zaretsky (Ref. 8) proposed a generalized Weibuil-based

methodology for structural fatigue life prediction that is also based on a discrete-stressed-

volume approach. There are, however, distinct differences in approach between the method

proposed by Zaretsky (Ref. 8) and that of Ioannides and Harris (Ref. 7).

Two stress-life exponents are referred to. The critical shear stress-life exponent c is

related to the Lundberg-Palmgren parameter cle (Eq. (3)) and applies if V and z o are fixed.

The Hertz stress-life exponent n encompasses all the effects on life that arise when the Hertz

stress is changed on a f'txed geometry by varying the normal load. The contact or Hertz

stress-life exponent n (which is different from the critical shear stress-life exponent c) is

related to the load-life exponent p as follows:

n
p ---_ 3 (8)

To complicate matters, there appears to be an issue of what the value of p should be for

purposes of analysis. Work reported by Parker and Zaretsky (Ref. 9) suggests that for air-

melt-processed steels, such as used by Lundberg and Palmgren (Ref. 3), the Hertz stress-life

exponent n is approximately 9. However, for the cleaner and more recent vacuum-processed

steels, n - 12.

Varying the Hertz stress-life exponent n can significantly affect life predictions for

beatings. Using n = 9 results in a more conservative estimate of bearing life than using n =

12. Also, the ratio of the predicted lives is a function of load and is directly related to

CDIPeQ. Hence, in the normal operating load envelope, life may be underpredicted by a factor

of 20 _vhen using the ANSI/AFBMA standards or a ninth power Hertz stress-life exponent n.

A proper stress-life exponent then becomes more than of mere academic interest, since a

designer requires a reliable analytic tool to predict bearing life and performance.

In view of the aforementioned discussion, the objectives of the work reported herein

were (1) to evaluate and compare the various life theories for rolling-element bearings,

specifically to point contacts; (2) to evaluate the effect of the critical shear stress-life

exponent c on the Hertz stress-life exponent n and on bearing-life prediction; and (3) to

determine what effect the presumption of a fatigue limit has on bearing life prediction.
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HERTZ STRESS-LIFE RELATION

The generally accepted relation between load and life in a rolling-element bearing is

that life varies with the inverse cubic power of load for ball bearings (point contact) and with

the inverse fourth power of load for roller bearings (line contact).

Because stress is proportional to the cube root of load for ball beatings, the load-life

relation for ball bearings can be resolved into a stress-life relation, where life is inversely

proportional to the maximum Hertz stress to the ninth power. This relation has been generally

accepted by ball bearing manufacturers and users. There is at least one exception where a

manufacturer has indicated that the life of ball bearings varies inversely with the fourth power

of load (or 12th power of Hertz stress). Nevertheless, the inverse cubic load-life relation has

been included in the ANSI/AFBMA standards for ball bearings (Ref. 5).

Later fatigue tests of ball bearings by several investigators tended to verify this inverse

cubic relation. Styri (Ref. 10) presented data for two types of ball bearings. For one group of

6207-size, deep-groove ball bearings under various radial loads from 3.5 to 17.3 kN (775 to

3880 Ibf), life was inversely proportional to load to the 3.3 power. Another group of 1207-

size, double-row, self-aligning bearings was tested such that the maximum Hertz stress at the

outer-race-ball contact varied from 4.0 to 5.6 GPa (580 to 810 ksi). Here it was found that

life varied inversely with the ninth power of stress (or the third power of load). Cordiano et

al. (Ref. 11) reported load-life data for 217-size, thrust-loaded ball bearings. The resultant

Hertz stress-life exponents were 8.1, 9.6, and 12.6 for three lubricants, a water-glycol base, a

phosphate ester base, and a phosphate ester, respectively. McKelvey and Moyer (Ref. 12)

reported that, with four groups of AISI 4620, carburized-steel, crowned rollers (elliptical

contact), fatigue life varied inversely with maximum Hertz stress to the eighth to ninth power.
Maximum Hertz stress in these tests varied from 1.8 to 3.3 GPa (262 to 478 ksi). Townsend

et al. (Ref. 13) surface fatigue tested three groups of case-carburized, eonsumable-electrode-

vacuum-arc-remelted AISI 9310, 8.89-cm (3.5-in.) pitch diameter spur gears at maximum

Hertz stresses of 1.5, 1.7, and 1.9 GPa (222, 248, and 272 ksi). The gears were run at

10 000 rpm and 77 °C (170 °F). The lubricant was a superrefined naphthenic mineral oil with

an additive package. The LI0 life varied inversely with stress to the 8.4 power, but the Ls0

life varied inversely with stress to the 10.2 power. The average Hertz stress-life exponent n

was 9.3.

Several other investigators (Refs. 14 to 22) have reported data with bench-type,

rolling-element fatigue testers, rather than with full-scale bearings or gears. The L10 lives as a

function of maximum Hertz stress for these data are shown in Figure 1, with the data

summarized in Table 1. From the table the maximum Hertz stress for these data ranged from

3.7 to 9.0 GPa (526 to 1300 ksi). With the exception of Greenert's work (Ref. 19) the stress-

life exponents ranged from 8.4 to 12.4. The data are all for AISI 52100 and AISI M-50 steels

(except for the data reported by Barwell and Scott (Ref. 14), who do not state the type of

steel). At least two sets of data were for air-melted material, three were for vacuum-degassed

material, and one was for vacuum-arc-remelted steel. The other references do not state the

melting process. The stress-life exponents from Greenert (Ref. 19), ranging from 15 to 19, are

much higher than those from other published data. This lack of correlation is unexplained.
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LoroschfReE 23) fatiguetestedthreegroupsof vacuum-degassed,7205B-size,AISI
52100innerracesat maximumHertzstressesof 2.6, 2.8, and3.5 GPa(370,406,500 ksi),
respectively.Eachgroupconsistedof 20 races,for a total of 50. (It is assumed that all 60

races came from a single heat of material and were of the same hardness, but Lorosch

fReE 23) does not state so in his paper.) After the test runs Lorosch examined cross sections

of the races. He observed that only at the lowest stress, 2.6 GPa (370 ksi), did no measurable

plastic deformation occur. At the two higher stresses plastic deformations of different

magnitudes were measured. Lorosch divided the races at the two higher stresses into groups

according to these magnitudes. Group A included the races with the smaller deformations; and

group B, the races with the larger deformations. The resultant stress-life exponent of groups A

and B was 12. However, when E.V. Zaretsky reconstituted the data for groups A and B into a

single group, designated group AB, the stress-life exponent varied from 12 to 27 depending

on the stress range over which the exponent was calculated. Lorosch fRef. 23) did not

calculate the stress reduction resulting from plastic deformation of the races, nor did he report

on component hardness, hardness differential between the balls and races, and residual

stresses induced during operation, all of which would also have affected his results. From

these tests Lorosch fRef. 23) concluded that "under low loads and with elastohydrodynamic

lubrication there is no material fatigue, thus indicating that under such conditions bearing life

is practically unlimited."

Zwirlein and Schlicht fRef. 24), in a companion paper published concurrently with that

of Lorosch fReE 23) and using the same 7205B-size bearing inner race data, state that

"contact pressures less than 2.6 GPa (370 ksi) do not lead to the formation of pitting within a

foreseeable period. This corresponds to 'true endurance strength'." This observation would

support the assumption by Ioannides and Harris fReE 7) of the existence of a "fatigue limit

for bearing steels." However, this observation is not supported by rolling-element fatigue data

in the open literature for stress levels under 2.6 GPa (370 ksi)--such as those reported in

References 25 to 29, which exhibited classical rolling-element fatigue. In rotating machinery

nearly all rolling-element beatings operate at a maximum Hertz stress less than 2.1 GPa

(300 ksi). Therefore, if Lorosch fRef. 23) and Zwirlein and Schlicht fReE 24) were correct,

no bearing in rotating machinery applications would fail by classical rolling-element fatigue.

To the authors' knowledge there are no reported laboratory-generated, full-scale

bearing rolling-element fatigue data at stresses significantly below 2.1 GPa (300 ksi) that

would either establish or refute this presumption. However, Townsend et al. (Ref. 30)

reported rolling-element fatigue tests for through-hardened spur gears made from vacuum-

induction-melted, consumable-electrode-vacuum-arc-reme!ted (VIM-VAR) AISI M-50 steel

run at a maximum Hertz stress of 1.7 GPa (248 ksi). The AISI M-50 gears ran for at least

five times the life of identical AISI 9310 gears and failed both by classical rolling-element

fatigue and tooth bending fatigue. What is significant about these tests is that classical rolling-

element fatigue is reported for a bearing steel (M-50) at stresses as low as 1.7 GPa (248 ksi),

the stress range in which most bearings operate. If there exists a fatigue limit for bearing

steels, it certainly would have to be less than a maximum Hertz stress of 1.7 GPa (248 ksi).

The explanation for the trend in the Lorosch (Ref. 23) and Zwirlein and Schlicht

(Ref. 24) data is the inducement of compressive residual stresses in the AISI 52100 steel

caused by the transformation of retained austenite into martensite during rolling-element
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cycling. Thesecompressiveresidualstresseswere reported by Zwirlein and Schlicht (ReL 24).

Compressive residual stresses reduce the effective magnitude of the maximum shear stresses

caused by Hertzian loading. This lower stress results in longer bearing life and deviation from

the Hertz stress-life exponent n of 9 or 12 to a significantly higher value. Loroseh (Ref. 23)

and Zwirlein and Schlicht (Ref. 24) extrapolated their data, leading them to eonclude the

existence of a fatigue-limiting stress rather than that induced compressive residual stresses had

increased tearing life.

Lorosch (Ref. 23) performed another seres of rolling-element fatigue experiments with

20 inner races, designated group C, from the same heat as groups A and B. He used a

Rockwell hardness tester to make 0.1-mm-diameter indentations at four evenly spaced

locations around the center of the race circumference. He divided group C into two 10-

bearing sets, which were tested at 2.6 and 2.8 GPa (370 and 406 ksi), respectively. The L10

lives for group C were significantly reduced from the group AB lives. These tests exhibited a

9.5 stress-life exponent. Because these indentations are analogous to wear debris denting

during bearing operation, the results suggest that surface damage is another factor affecting

the stress-life exponent.

BALL-RACE MODEL

To compare life theories and their variants, we selected a simple ball-race geometry

model for evaluation. The model assumes a plurality of normally loaded 12.7-mm (0.5-in.)

diameter balls running in a linear, nonconforming grooved race having a groove radius of

6.6 ram (0.26 in.) and a length l. A schematic of the ball-race model is shown in Figure 2.

The loads, stresses, and dimensions used for the ball-race model of Figure 2 are summarized

in Table 2. The three-dimensional, fmite-element analysis (FEA), geometry-for-the-gutter

(Fig. 2) model used in the studies is shown in Figure 3. The model geometry takes advantage

of the synu_tric nature of the Hertzian contact for the case of no significant surface shear

stresses. This model was expanded to encompass the full contact ellipse for our additional

studies, which included different surface shear patterns and their influence on the related

stress fields. However, those results are not reported as a part of this study. A full-race FEA

geometry was also constructed. The full-race model will be used for studying the interaction

of the centrifugal, axial clamping and press-fit stresses on the three-dimensional contact stress

fields and their influence on beating fatigue life.

The quarter section of the contact ellipse face was divided into approximately 162

elements. Element size ranged from 0.0991 mm x 0.0330 mm (0.0039 in. x 0.0013 in.) to

0.1278 mmx 0.03175 mm (0.00503 in. x 0.00125 in.) depending on the Hertzian stress level.

Element thickness in the depth direction was 0.0254 mm (0.0010 in.) until a depth zlb of

about 1.0. Beyond that depth the element thickness was gradually increased. A typical model

contained approximately 3500 to 5900 solid isoparametric elements depending on the Hertz

stress. The model for 2.4-GPa (350-ksi) Hertz stress had approximately 5800 elements and

7000 nodes, giving about 18 000 degrees of freedom after applying constraint boundary

conditions. The analysis was performed on a 386/33-MHz personal computer with the

COSMOS/M commercially available FEA software.
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We checkedtheFEA model results against calculated values by using classical Hertz

contact stress theory. Figure 4 shows a comparison of the subsurface stresses at the center of

the contact ellipse for 1.4-GPa (200-ksi) Hertzian stress. The FEA-predicted principal normal

stresses and the in-plane shear stress X45 agreed within 3 percent of theory over the Hertz

stress range studied.

Figure 5 shows the three-dimensional Yon Mises effective or equivalent stress field. A

maximum stress of about 0.84 GPa (122 ksi) occurred 0.114 mm (0.005 in.) below the

surface for a 1.4-GPa (200-ksi) Hertz stress. Figure 6 shows that the in-plane shear stress x45

on a plane cut through the center of the contact ellipse perpendicular to the rolling direction.

The maximum shear stress of about 0.45 GPa (66 ksi) also occurred 0.114 mm (0.005 in.)

below the surface. Finally, Figure 7 shows the maximum orthogonal shear stress field acting

in the y-z plane. A mirror image of "_yzalso occurred at the forward half of the vertical

symmetry axis but had the opposite sign (not shown). The largest orthogonai shear stress was

0.32 GPa (46 ksi). It was the double amplitude of xyz on which Lundberg and Palmgren based
their selection of that stress for their analysis.

Figures 5 to 7 were included to show the three stress distributions that have been

discussed over the years as being the critical stress in determining beating fatigue life. These

three stresses are examined as the "stress of choice" within this paper.

The results of the FEA runs at the three Hertz stresses were saved as data bases to be

used in evaluating the life theories examined in this paper. For purposes of analysis, only the

life of the race will be considered at each load condition. The normal loads per ball are 623,

1617, and 3333 N (140, 364, and 749 lbf) producing maximum Hertz stresses of 1.4, 1.9, and

2.4 GPa (200, 275, and 350 ksi), respectively. The LI0 life at 2.4 GPa (350 ksi) is
normalized and assumed to be 1. The normalized lives at each stress load are summarized in

Table 2 for stress-life exponents n of 9 and 12 and shown in Figure 8, where

1
LlO -

s&
(9)

RESULTS AND DISCUSSION

Weibull Equation

The Lundberg-Paimgren theory (Ref. 3) is a variant of the Weibull theory of failure

(Ref. 2). The genius of Lundberg and Palmgren was to realize its applicability to rolling-

element bearings and to fit both bearing geometry and life data to the Weibull parameters.

However, Lundberg and Palmgren do deviate from the Weibttll equation by introducing the

depth to the maximum critical shear stress z o shown in Eqs. (4) and (5), which they assumed

to be the orthogonal shear stress. The rationale for introducing z o was; according to them,

because "it is possible that changes in condition of the material also depend on the depth

below the surface of the volume element considered. This assumption is necessary for the

treatment of fatigue in rolling bearings." They go on to state, "Weibnll's theory, however, is

built on the assumption that the first crack leads to a break. The frequent examples of cracks
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which do not reach the surface seem to show that this assumption is not valid for fatigue in

rolling bearings. Therefore, when setting up the life formulas consideration ought to be given

to the fact that the probability of a fatigue break occurring must he taken to he dependent on

the depth z o at which the most dangerous stress occurs" (Ref. 3).

Lundberg and Palmgren did not consider that in high-cycle fatigue crack initiation is

probably over 95 percent of the fife cycle and crack propagation is probably less than 5

percent of the life cycle. Accordingly, the life formula without z o, as proposed by Weibull

(Eq. (2)), may he applicable to bearing life prediction. Equation (2) can be written as follows:

m (10)

The factor A is a material constant. From Hertz theory V and x can he expressed as a function

of Sma x where

X-Sma x
(11)

2
v-

Substituting these values into Eq. (10) and solving for the exponents give

(12)

-2 - C

= -n (13)e

Experience has shown that the Weibull slope e for most heating fatigue data varies from 1 to

2. However, it has been accepted practice since Lundberg-Palmgren (Ref. 3) to assume this

value to he 1.1. Experience has also shown the value of the Lundberg-Palmgren parameter cle

to be 9. As a result, n would equal 10.81.

Assuming n of 9 and 12, cle would equal 7.18 and 10.18, respectively. Whereas cle =

7.18 can he considered too low, cle = 10.18, although slightly higher than 9, may he

acceptable. Normalized values of the material constant A for a Hertz stress-life exponent n of

10.81 are given in Table 3. The calculated relative fives for each of the stresses are given in

Table 4.

Lundberg-Palmgren Equation --2::: : :_ : : :: :: : ......... :

The Lundberg-P_gren theory has been discussed in some detail. A reading of

Reference 3, however, does not make intuitively obvious their approach to bearing life

prediction and the determination of their variables and exponents. Equation (4) can he

rewritten as follows:

10



n

Smax
(14)

As for V and "co from Eqs. (11) and (12), z o can be expressed as a function of Sma x, where

Z O _ Sma x

Substituting these values into F_z1. (14) and solving for the exponents give

(15)

-2-c+h
-- -ll

(16)

If it is assumed that e = 1.1 and n = 9, there are two unknowns to be solved for. A second

equation is therefore necessary.

Lundberg and Palmgren (Ref. 3) showed rolling-element fatigue data (Lso) from which

a relation between ball diameter D and life was empirically determined, where

L - D 5"4

From Hertz theory a relation for V, x o, z o, and D may be obtained as follows:

(17)

-2

.Co_ D 3
(18)

2 5

V- azol - abl - D'_D - D "_
(19)

z o - D 113 (2o)

Substituting Eqs. (17) to (20) into F_,q. (14) and solving for the exponents give

-5 + 2c + h
= 5.4 (21)

3e
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CombiningEqs. (21) and (16) and substituting e = 1.1 and n = 9 yield h = 2.33, or h/e = 2.1

and c/e = 9.3. These values, summarized in Table 3, are those of the Lundberg-Palmgren

equation (Ref. 3) and the ANSI/AFBMA standards (Ref. 5).

What Lundberg and Palmgren did not consider was the statistical variability of their

data related to Eq. (16). From Hertz theory

Sma x - D-2/3
(22)

Substituting Eq. (22) together with Eqs. (18) to (20) into Eq. (14) and solving for the

exponents give

-5+2c+h 2n

3e 3 (23)

Letting e = 1.1 and n = 9 yields h = 3, or Me = 2.7 and cle = 9.9. Although cle = 9.9 is

slightly high, it is acceptable. If it is assumed that n = 12, Eqs. (16) and (23) yield hie = 2.7

and cle = 12.91. From experience this cle is too high and not realistic.

Ioannides-Harris Equation

Ioannides and Harris (Ref. 7), using Weibull ('Ref. 2) and Lundberg and Palmgren

(Ref. 3), introduced a fatigue-limiting stress and integrated the computed life of elemental

stress volumes to predict beating life. Their equation, which relates to each elemental volume,

is as follows:

In I_._ Ne II:R (%o" %u)c dV
s z h (24)

The equation is similar to that of Lundberg and Palmgren (Eq. (4)) except for the introduction

of a fatigue-limiting stress xu. Equation (24) can be rewritten to represent each individual
stressed volume as follows:

(25)

The three-dimensional FEA model data base previously discussed contains the elemental

volumes and associated stresses. An elemental reference volume is required to be selected as

well as a reference stress and reference depth. These reference points can be taken as the

volume comprising the maximum critical shear stress and the depth to this volume. Equation

(25) can be rewritten as follows:

12
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V. 1 c h

L--ff J L(,o- J L rod (26)

(27)

Equation (26) is identical to the Lundberg-Palmgren Eq. (14) except for the fatigue-limiting

stress x u. Values ofe = 1.1, c/e = 9.3, and/de = 2.1 for the ball-race model of Figure 2 as

well as a reference volume and shear stress 1:45 of 104x10 "15 m 3 (6.33x10 9 in. 3) and 0.77

GPa (111 ksi), respectively, were assumed for the Ioannldes-Harris Eq. (26). Values of xu =

0.21 GPa (30 ksi) for xo and x45 and 0.35 GPa (50 ksi) for Ovm were also assumed. The

relative life calculations are summarized in Table 4 and compared with the previous

calculations for the Weibull Eq. (10) and the Lundberg-Palmgren Eq. (14). As might be

expected, the relative life values at 1.4 GPa (200 ksi) are extremely high with this approach,

in contrast to what would be expected. If the apparent values of the Hertz stress-life exponent

n were 19.6 when the orthogonal shear stress was used, 16.8 when the maximum shear stress

was used, and 15.1 when the Von Mises stress was used, only two sets of data in the

literature (Refs. 19, 23, and 24) would support this analysis.

Zaretsky Equation
Both the Weibull and Lundberg-Palrngren equations relate the critical shear stress-life

exponent c to the Weibull slope e. The Lundberg-Palmgren parameter cle thus becomes, in

essence, the effective critical shear stress-life exponent, implying that the critical shear stress-

life exponent depends on bearing life scatter or dispersion. A search of the literature for a

wide variety of materials and for non-rolling-element fatigue reveals that most stress-life

exponents vary from 6 to 12. The exponent appears to be independent of scatter or dispersion

in the data. Hence, Zaretsky (Ref. 31) has rewritten the Weibull equation to reflect that

observation by making the exponent c independent of the WeibuU slope e, where

in l-_eNev
s (28)

Equation (28) differs from the Weibull Eq. (2) and the Lundberg-Palmgren Eq. (4) only in the

exponent of the stress x. Only for e = 1 do the two reflect the same power relation. Equation

(28) differs from Ltmdberg-Palmgren further in that it does not recognize the effect of stress

depth z o. In addition, the Zaretsky model differs from Lundberg-Palmgren conceptually

because it makes survival probabilities dependent on local stress pointwise in the stressed

volume as does Ioannides-Harris (Ref. 7), whereas Lundberg-Palmgren used only one critical

stress. Equation (28) can be written like Eq. (10),

1

LIo=AII_ IllC (29)
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Equation (29) has a life-stressed-volume exponent dependent on data dispersion or cumulative

distribution and a critical stress exponent independent of data dispersion or Weibull slope.

Zaretsky, like Ioannides and Harris (Ref. 7), integrates the complete life of elemental
stressed volumes as follows:

1

m T - Iv m¢
(30)

As with ioannides and Harris ('Ref. 7) an elemental reference volume is required. Equation

(29) is rewritten as follows:

LV J LX,'J

The lives of the individual stressed elements are summarized in accordance with Eq. (27).

(31)

Using the same finite-element analysis as used for the Ioannides-Harris Eq. (26) and

assuming that c = 9 and e = 1.1, the relative lives at each stress level were calculated and are

summarized in Table 4 on the basis of maximum shear stress '1745 and the Von Mises stress

Ovm. The apparent Hertz stress-life exponent n was 10.8 for the maximum shear stress and

11.1 for the "Con Mises shear stress. Both values coincide with experimental values in the

literature (Table 1). However, the same stress-life exponent is obtained if the Weibull Eq.

(10) is used without a finite-element analysis.

Although Zaretsky (Ref. 31) does not propose a fatigue-limiting stress, he does not

exclude that concept either. However, his approach is entirely different from that of Ioannides

and Harris (Ref. 7). For critical stresses less than the fatigue-limiting stress, the life for the

elemental stressed volume is assumed to be infinite. With this assumption and for the same

fatigue-limiting stresses used previously with the Ioannides-Harris Eq. (26), the lives at the
three stress levels were recalculated. The resultant lives were no different from those shown

under the Zaretsky equation column in Table 4. However, if (x i - xu) and ('i_re f - "gu) ale

substituted for "ci and Xref in Eq. (31), the values of the stress-life exponent n approach those

of Ioannides and Harris (Ref. 7) shown in Table 4.

MATERIAL CONSTANT

The material constant A in each lifeequation allows the equation to be matched with

existing data, as Lundberg and Palmgren (Ref. 3) did in their original work. Because there are

no data for the ball-race model of Figure 2, it is possible to normalize the material constant

for a normalized L10 life of 1 at a maximum Hertz stress Sma x of 2.4 GPa (350 ksi). These

normalized values are summarized and compared in Table 3 for each life analysis. The units

for A will differ depending on what equation it is related to. The race length I is factored out

of the stressed volume and is shown as part of the material constant. For finite-element

14



analyses the length of the unit volume in the rolling direction has been factored into the

material constant.

CONCLUDING COMMENTS

The comparisons presented herein are perhaps the first time a qualitative comparison

has been made between the various theories and approaches to predicting bearing life. No

attempt was made to factor into the life equation other variables covered by STLE Life

Factors for Rolling Bearings (Ref. 32). However, it is noteworthy to consider the effect of

residual stresses and hoop stresses on roUing-element fatigue life. The Lundberg-Palmgren

equation uses orthogonal shear stress as the critical shear stress. This stress would not be

significantly affected either by hoop or residual stresses below the contact surface. The two

dominant stresses that must be considered are the shear stress x45 and the Von Mises stress

Ovm. Our calculations strongly suggest that the Von Mises stress may more accurately reflect

the magnitude of change in life with hoop stress and that both the Von Mises and x45 shear

stresses may proportionately reflect the effect of residual stress.

We provided a finite-element method that permits the practical implementation, with

accessible computer resources, of a life model which integrates survival probabilities over the

stressed volume for several suggested expressions for the survival probability of a volume

element, such as those of Lundberg-Palmgren, Ioannides-Harris, or Zaretsky. Using this

method it should now be possible to more accurately assess the effect of surface traction,

residual stress, and hoop stress on beating life and reliability.

In our opinion there may be strong justification that this is the time to reexamine the

Lundberg-Palmgren equation. The equation has served the manufacturer, designer, and user of

bearings well. However, even with STLE life factors the life predictions are conservative. We

believe that the approach of Zaretsky (Ref. 31), based on a modified Weibull equation, best

reflects the modem data base for bearing steels. However, a significant effort would be

required to change existing bearing design computer codes and the ANSI/AFBMA and ISO

standards in order to make any changes practical to the user community.

SUMMARY OF RESULTS

A critical analysis was presented comparing the results of different life theories and

discussing their implications in the design and analysis of rolling-element bearings. The

following results were obtained:

1. For an inverse ninth power relation between life and maximum Hertz stress, the

Lundberg-Palmgren theory qualitatively predicts life best. However, for an inverse 12th power
relation between life and maximum Hertz stress, a Zaretsky-modified Weibull equation is

superior.

2. The Ioannides-Harris-modified, Ltmdberg-Palmgren equation based on a "fatigue-

limiting stress" significantly overpredicts life. _alysis implies an inverse life-maximum

Hertz stress exponent as high as 19.6 for a fatigue-limiting stress of 0.21 GPa (30 ksi).

15



3. Using a fatigue-limiting stress coupled with a f'mite-element analysis while

assuming that those elements being stressed below the fatigue limit have infinite life does not

affect life prediction. However, subtracting a fatigue-limiting stress from each elemental stress

distorts the life-maximum Hertz stress relation, producing unreasonably high predictions of
life.
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TABLE 2,--SUMMARY OF STRESSES, HERTZIAN DIMENSIONS, AND RELATIVE LIVES FOR
BALL-RACE MODEL OF FIGURE 2

t"Balldiameter, 12.7 mm (0.5 in.); race-groove radius, 6.6 mm (0.026 in.)..]

Paxaz'r_t_"

Maximum Hmz suess, GPa (ksi)

Hero,an contact ellipse, mm (in.):
Semimajor axis, a

Semiminor axis, b

Maximum shear stress values and depths:

%, GPa (ksi)

zo, ram (in.)

'rmax, GPa (ksi)

Zo, mm (in.)

Ovm,GPa (k_i)
Zo,mm(i_)

Relative lives for values if n from Eq. (9):
n=9

n=12

Normal ball load, N Obf)

623(140)

1.4 (200)

1.3 (0.05)

0.16 (0.006)

0.343(49.8)
0.o79(0.o03)
0.459(66.6)

0.114 0.005)

0.821 (119.1)
0.114 (0.005)

153.94
825.01

1617064)

1.9 (275)

1.8(0.o7)
0.22 (O.OO9)

0.472(68.5)

0.107(0.0O4)
0.644(93.4)

0.1400.006)
1.154(167.4)

0.140 (0.O06)

8.76
18.06

3333(749)

2.4 (350)

2.3(0.09)

0.28(o.o11)

0.601 (87.2)
0.137 (0.0O5)
0.814 (118.1)
0.191 (0.O08)

1.465 (212.4)

0.191 (0.008)

1.0
1.0

TABLE 3.--ASSUMED AND CALCULATED VALUES FOR LIFE ANALYSIS OF TABLE 4

Parameter

Critical shear stress,

GPa (ksi)

Wdbull slope, •

Lundberg-Palmgren

parar_tct_:
de
Me

Shear fatigue-

limiting stress, x.

Normalizedmaterial

constant? ,4/1°-9°9,

N-m Obf-in.)

Stress-life exponent,
n (Eq. (9))

Weibull

Eq. (10)

l.I

9.0

2,6×10 -/4

(5.8×1042 )

10.8c

Palmgren
_. (14)

%

1.1

9.3 a

2.1 a

[oannides-HarrisEq.(25)

%

I.I

9.3

2.1

o.21(30)

_45

1.1

9.3

2.1

o.21 (30)

O'vl _

1.1

9.3
2.1

0.35 (50)

'¢45

1.I

8.1x1080

(l.6xl0_')

9.0

0.58x1039

(11 542)

19.6c

4.5xi039

(90 356)

16.8 c

2.5x1039

(49 358)

15.1c

Za_
Eq.(29)

9.0b

1.5xlO38

(34 056)

I0.8c

(_vll'*

I.I

9.ob

1.3x1036

(28 357)

11.I ¢

aCalculated.

bValue of exponent c where Lundberg-Palmgren paran-w,tor clebecomescele.
cCalculated (refer to Table 4).
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TABLE 4.--COMPARISON OF RELATIVE LIFE FROM FOUR LIFE EQUATIONS

su_ss,
GPa (ksi)

1.4(2oo)
1.9(275)
2.4(35o)

Calculated

valueof n

Relative lives
for values of

n fromEq. (9)

n = 9 n ffi i 2

153.9 825.0
8.8 18.1

1.0 1.0

9.0 12.0

W_bull

F.q.(i0)•

423.9

13.6

1.0

ci0.$

Relative theoretical lives

Umdberg-
Palmgren
Eq. (14)b

154.7
7.1

1.0

tO.0

Ioarmides-I-IartisF_.,q.(25)

Basedon Basedon

_45

59 477.8 12 112.0

76.1 149.7

1.0 1.0

c19.6 c16.8

Based on

Ovm

4643.0

85.2

1.0

c15.1

Za_mkyEq.(29)

Based Based

on "c45 on o m

431.4 495.6

11.7 12.9
1.0 1.0

c10.8 Cll.l

abased on xmax-
bBased on %.
CDeu:rmined between 1.4 and 2.4 GPa (200 and 350 ksi).

1300
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Life, millions of stress cycles

Figure 1 .--Summary of published stress-life relation data for Hertzian

contacts failing from rolling-element fatigue. (Refer to Table 1 .) Ref. 9.
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Normal load

Figure 2.--Ball-race model.

Figure 3.inFinite-element quarter symmetry ball-race
model.
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1.0 _ FEA_E Closed-form solution

0.8 --_ _(ro_rection) ,/ "_
• /I jr 1.

E 0.6 I_ _Tz(depth d,rection)

_ _ J-- °'x (perpendicular
toro,,ingdi tionl

0.4 -- _

o.2_ I I I I _1 ==-_-"'--_H--_
0.0 J

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Normalized depth below groove surface, Z/b

Figure 4._Compadson of finite-element stress analysis (FEA) with closed-form solution for

principal stresses and _45 shear stress as a function of depth below groove surface (see

Fig. 2). Ball diameter, 12.7 mm (0.5 in.); groove conformity, 52 percent; normal load, 623 N

(140 Ibt); maximum Hertz stress, 1.4 GPa (200 ks_; semimajor contact axis, a, 1.3 mm

(0.05 in.); semiminor contact axis, b, 0.16 mm (0.006 in.).
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Von Mlses stress,

_rvm,

GPa (ksi)

0.841 (122)

0.731(106)

0.629 (91,2)

0.419 (60.8)

0.314 (45.6)

0.210 (30.5) ..........

0.001 (0.133)

Figure 5.--Von Mlses stress field in race groove for Hertzian contact of ball on groove (see

Fig. 2). Ball diameter, 12.7 mm (0.5 in.); groove conformity, 52 percent; normal load, 623 N

(140 Ibf); maximum Hertz stress, 1.4 GPa (200 ksQ; semimajor contact axis, a, 1.3 mm

(0.05 in.); semiminor contact axis, b, 0.16 mm (0.006 in.).
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In-plane
shearstress,

_'45'

GPa (ksi)

0.452 (65.5)--_

0.421 (61.1)--_
0.392 (56.8) _..

0.331 (48.1) .....

0.301 (43.7) ......

0.271 (39.3

0.241 (35.0) .......

0.211 (30.6) .......

0.181 (26.3) .......

0.151 (21.9) _-.

0.121 (17.5) _,

0.053 (7.8) --_ _.

0.091 (13.2) --_ _

//

0.031 (4.5)--/

Z

_--_X

Figure 6.--In-plane shear stress in race groove for Hertzian contact of ball on groove (see Fig. 2).

Ball diameter, 12.7 mm (0.5 in.); groove conformity, 52 percent; normal load, 623 N (140 Ibf); maximum

Hertz stress, 1.4 GPa (200 ksi); semlmajor contact axis, a, 1.3 mm (0.05 in.); semlmlnor contact axis, b,

0.16 mm (0.006 in.).
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Orthogonal

shear stress,

-y_
GPa (ks_

0.319 (46.2) --,,,, _.._ _'_ _-''-_ "-_ _ X

0.292 (42.3) ____ --__,,_.__ - --_'_'--_--_._ _ "" >_<

u.--oo too. _ _.___.__-_.. _ _

0.23s(34.5) ..... _ J J

0.184(26.7)..... _ __-L\-_.'_ " ....-t

0.I 57 (22.8) ---- --_'-'-----L I
..... I \-"-'_ i Ft"

0.130 (18.9) _- .:f

0,103 (15,0) __.I.I 11 ?--___ ,i

- jI
/
I

.I 1

I / :

_LL L....

0.077 (11.1) --/ ' _- 0.023 (3.3)

_- 0.050 (7.2)

f-'

I
I

i 'II
z

Y

Figure 7._Orthogonal shear stress in race groove forHertzian c6ntact of ball on groove (see Fig. 2). Ball diameter,
12.7 mm (0.5 in.); groove conformity, 52 percent; nodal i0ad, 623 N_40]bf); maximum Hertz stress, 1.4 GPa (200 ks_;

semimajor contact axis, a, 1.3 mm (0.05 in.); semlminor contact axis, b, 0.16 mm (0.006 in.).

Stress-life

_ exponent,

_ 200
-_ 150 _ 1 III

_ 10 o 101 102 103

Relative life

Figure 8.--Effect of stress-life exponent and maximum Hertz stress on rolling-element

fatigue life of nonconforming race groove.
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